目录
夯神HC型冲击夯的压实度在1米至10米,公路施工常用的HC36和HC42型有效深度(压实度)在1.5米至3米,重型HC150/180,有效深度最大可达到10米。在实际施工中,压实度还跟夯击强度、夯击频率等有关。下面就为大家简单分享下冲击夯的压实度。
冲击夯施工效果检测
本人认为,可将公路建设质量归纳为一个指标,即预期(如大中修期)内的平直度变化不得大于预期值,属几何特性范畴;向下可分解为强度和稳定性两个物理(力学)指标,强度反映了承载能力,稳定性反映了该承载能力的持续性;压实度、弯沉、K30、Evp等均属于孙辈以下的衍生指标或关联指标。
一般而言,材料及聚合工艺一定时,固体聚合物的强度主要取决于密度。对于公路路基,即土体压实密度。冲击夯可将已经压实合格的土体继续压缩3~10%,对土体强度的增强效果显而易见。
上述所指物体强度在各类载荷的反复作用下能否持续稳定,一般取决于聚合材料内部颗粒的均匀度。不均匀结构对于动载荷和轻微缺陷更敏感,抗疲劳能力低。分层碾压土体层内颗粒上密下疏、层间为软硬面平行贴合,属典型的不均匀内部结构。高速液压夯实机以其影响范围内的诸碾压层为一体对土体颗粒压缩重组,在提高颗粒密度的同时弱化或消除了既有的层内及层间缺陷,路基内部结构的均匀度显著提高。
标准配置的HC36冲击夯3档9锤补强稳定合格的96区时沉降量50~100mm。无论施工是否按照标准,检测如何精确,桥涵背96区补强沉降量接近或大于150mm的部位存在质量缺陷是无异的。
冲击夯动力压实工艺的技术优势
Evd动态应力测试仪对土体产生的的动应力大约相当于车辆通过时,HC36冲击夯(第三代产品)标准配置时产生的动应力大约为Evd动态应力测试仪的25倍
Evd动态应力测试仪对土体产生的的动应力大约相当于车辆通过时,HC36高速液压夯实机(第三代产品)标准配置时产生的动应力大约为Evd动态应力测试仪的25倍;HC36高速液压夯实机的最大下压力大约为重型压路机压实轮重力的15倍上下,有效压实厚度约2m(指己分层压实的总厚度),影响深度约4m;重型压路机对土体的下压力不及满载重型自卸车车轮,与冲击夯相比不在一个数量级。几千年来,动力压实工艺(夯实等)是保证压缩土体稳定性的最佳工艺方法,静力压实技术(静碾、振碾、堆土压重等)难以逾越。世上存续数百年、上千年的压缩土建筑物皆为夯土。如现存2000年前的第一条高速公路—秦直道的填方段即为夯土。
冲击夯对碾压达标路基的补强作用
分层碾压的土体具有层内上密下疏、层间结合力低的特征,路基的承载力、稳定性及抗动载能力相对较低,这些固有缺陷通过较长的自然实效、工后加载预压等可弱化。根据不同施工条件,使用压实强度远大于碾压机械的冲击压路机、强夯、高速液压夯实机进行动力压实补强的效果更直接、更显著。冲击夯的主要功能之一是在其影响范围内,对分层碾压土体进行整体化处理,在进一步动态压缩土体的同时,弱化层内颗粒上密下疏、层间结合力低等固有缺陷及人为施工质量缺陷,提高土体的密度及均匀度,从而提高路基整体强度及稳定性。提高的程度与路基原有质量及机器使用参数相关。以路基填筑时选用的国产第三代高速液压夯实机HC36型为例
分层碾压的土体具有层内上密下疏、层间结合力低的特征,路基的承载力、稳定性及抗动载能力相对较低,这些固有缺陷通过较长的自然实效、工后加载预压等可弱化。根据不同施工条件,使用压实强度远大于碾压机械的冲击压路机、强夯、高速液压夯实机进行动力压实补强的效果更直接、更显著。冲击夯的主要功能之一是在其影响范围内,对分层碾压土体进行整体化处理,在进一步动态压缩土体的同时,弱化层内颗粒上密下疏、层间结合力低等固有缺陷及人为施工质量缺陷,提高土体的密度及均匀度,从而提高路基整体强度及稳定性。提高的程度与路基原有质量及机器使用参数相关。以路基填筑时选用的国产第三代高速液压夯实机HC36型为例,有效影响深度~2m,3档9锤时桥背(96区)的补压沉降量的大多50~200mm。沉降量50mm时,有效区内土体平均压缩率~2.5%;沉降量100mm时,压缩率~5%;沉降量200mm时,压缩率~10%。即便有效区内压缩率按70%计(其余计为深层压缩),土体实际密实程度仍显著提高。
以上就是为大家分享的冲击夯压实度的相关内容,如果您还有疑问,可以直接联系我们。高速液压夯实机是快速、直观抽查检测路基实际填筑质量的最佳设备之一。如果能在路基完成后或路面施工前使用冲击夯进行大范围抽查,无论是设计问题、施工问题、检测问题,无论导致质量缺陷的原因是人为的还是天然的,高速液压夯实机皆可做到一览无遗。